Nutritional supplements and most medications are meant to target specific physical systems or organs. Intravenous drip and injection are the most effective methods of delivery, transferring necessary chemicals directly to the blood. When swallowed, medications usually face degradation in the acids of the upper digestive tract. Liposomal encapsulation creates a protective barrier, ultimately allowing more complete absorption.
Scientists first became aware of the process during the 1960s, and their discovery ultimately led to new and more effective means of administering drugs internally. Today, it is widely used in the treatment of age-related degenerative conditions affecting vision, stubborn fungal infections, and even some kinds of cancer. Although standard methods of delivery still predominate medically, encapsulation has proven to be a viable alternative.
For drugs to survive the upper digestive tract intact, they need to be protected by some kind of barrier that does not cause any additional physical problems. The best solution so far is to create microscopic drug capsules using a material that is already a part of cellular walls throughout the human organism. When activated using one of three primary methods available today, tiny protective liposome bubbles are formed.
They are microscopic, and permit the medication protected inside to safely reach the bloodstream via the small intestine, where they are directly absorbed. This not only improves the overall therapeutic intent in many cases, but can also reduce the possibility of harmful side effects. Not all medications are suitable for this method of delivery, which is most effective with water-soluble drugs.
Because it involves fewer undesirable reactions than invasive delivery, there are immediate advantages of using this process. Liposomes are bio-compatible and biodegradable, leaving behind no undesirable toxins. They not only survive the onslaught of digestive acids, but are able to function as small time-release ports within the gut. When potentially toxic drugs must be used to fight cancers, fewer sensitive tissues face unwanted exposure.
While being used successfully today in many hospitals, there are some drawbacks. Production costs are comparatively high, but are subject to a natural decrease as product use expands. Seal leakage has been an issue in some cases, and simple oxidation processes can diminish effectiveness. Certain drugs may experience a diminished half-life, and their long-term viability may be reduced. Even with these known issues, positive benefits exceed negative reports.
The past decade has seen a transition from strictly medical venue to include delivery of nutritional supplements and cosmetic materials. Anecdotal evidence of an increase in physical well-being associated with administering vitamins and minerals in this way are common. Vitamin C has long been touted as a natural way to combat the effects of upper respiratory infections, and this method is said to provide noticeably better results than pills alone.
Although there is currently widespread information available outlining personal production of encapsulated herbs, vitamins and minerals, making medical-quality products is costly and complicated, and is not a panacea for the problems associated with aging. As uses for this drug delivery process continue to grow, consumers will benefit most from its incorporation into health regimens that are already known to be beneficial.
Scientists first became aware of the process during the 1960s, and their discovery ultimately led to new and more effective means of administering drugs internally. Today, it is widely used in the treatment of age-related degenerative conditions affecting vision, stubborn fungal infections, and even some kinds of cancer. Although standard methods of delivery still predominate medically, encapsulation has proven to be a viable alternative.
For drugs to survive the upper digestive tract intact, they need to be protected by some kind of barrier that does not cause any additional physical problems. The best solution so far is to create microscopic drug capsules using a material that is already a part of cellular walls throughout the human organism. When activated using one of three primary methods available today, tiny protective liposome bubbles are formed.
They are microscopic, and permit the medication protected inside to safely reach the bloodstream via the small intestine, where they are directly absorbed. This not only improves the overall therapeutic intent in many cases, but can also reduce the possibility of harmful side effects. Not all medications are suitable for this method of delivery, which is most effective with water-soluble drugs.
Because it involves fewer undesirable reactions than invasive delivery, there are immediate advantages of using this process. Liposomes are bio-compatible and biodegradable, leaving behind no undesirable toxins. They not only survive the onslaught of digestive acids, but are able to function as small time-release ports within the gut. When potentially toxic drugs must be used to fight cancers, fewer sensitive tissues face unwanted exposure.
While being used successfully today in many hospitals, there are some drawbacks. Production costs are comparatively high, but are subject to a natural decrease as product use expands. Seal leakage has been an issue in some cases, and simple oxidation processes can diminish effectiveness. Certain drugs may experience a diminished half-life, and their long-term viability may be reduced. Even with these known issues, positive benefits exceed negative reports.
The past decade has seen a transition from strictly medical venue to include delivery of nutritional supplements and cosmetic materials. Anecdotal evidence of an increase in physical well-being associated with administering vitamins and minerals in this way are common. Vitamin C has long been touted as a natural way to combat the effects of upper respiratory infections, and this method is said to provide noticeably better results than pills alone.
Although there is currently widespread information available outlining personal production of encapsulated herbs, vitamins and minerals, making medical-quality products is costly and complicated, and is not a panacea for the problems associated with aging. As uses for this drug delivery process continue to grow, consumers will benefit most from its incorporation into health regimens that are already known to be beneficial.
About the Author:
When you are looking for information about liposomal encapsulation, you can go to the web pages online here today. Details are available at http://purensm.com now.
No comments:
Post a Comment